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The basis for canonical correlation analysis was 
developed by Hotelling (1935, 1936). He defined 

"the most predictable criterion" as the linear 
combination of criterion variables that is pre- 
dicted by a linear combination of predictor 
variables so that the two linear combinations 
have the highest possible correlation. When the 
influence of the first two linear combinations 
is partialled out, the process is repeated on 
the residuals, thus obtaining a sequence of pairs 
of variates with maximum correlations between 
them. These were denoted by Hotelling as canon- 
ical variates and canonical correlations, 
respectively. 

Many authors subsequently noted that determina- 
tion of the "most predictable criterion" is not 
always the appropriate goal of educational or 
psychological research. However, it was immedi- 
ately appreciated that the technique developed 
by Hotelling provides a mechanism to study the 
number and nature of mutually independent rela- 
tions between two sets of variables. 

Darlington, Weinberg and Walberg (1973) descriLed 
the manner in which canonical correlation anal- 
ysis assists in researching such relationships. 
First, it determines the minimum number of traits 
needed to account for the important linear rela- 
tionships between two batteries. For example, a 

researcher might hypothesize that there are r 

traits that describe the important relationships 
between a set of attitude variables and a set of 
performance variables. After performing a canon- 
ical correlation analysis, the number of signifi- 
cant relationships may be determined by testing 
whether the canonical correlation coefficient is 

greater than zero. Second, the standardized 
weights and factor structures assist in describ- 
ing the nature of these traits. 

An outline of the eigenanalysis procedure used in 
canonical correlation is presented to facilitate 
the following discussions. 

Let be the matrix of correlations between 
the p predictor variables; 
be the matrix of correlations between 
the q criterion variables; 
be the matrix of correlations between 

the predictor and criterion variables. 
The canonical correlation solution is obtained 
from eigenanalysis of the nonsymmetric matrix 
formed by the product yyy-'Ryx. 

Let A be the resulting diagonal matrix of eigen- 
values with the ith diagonal element de- 
noted 

A be the resulting matrix of eigenvectors 
for the predictor variables with the ith 
column denoted 

B be the resulting matrix of eigenvectors 
for the criterion variables resulting from 

eigenanalysis of the 

ith column denoted bi. 
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Then vxi = ailx1 + ai2x2 + 

the ith canonical variate 
dictor variables, 1 =1, .. 

2= min(p,q); 

vyj = + bj2y2 + 

the jth canonical variate 

terion variables, j =1, 

+ aipxp is 

for the pre- 

., s, where 

+ bj qyq is 

for the cri- 
., 2. 

The eigenvalues are the squared canonical corre- 
lation coefficients between each successive pair 
of canonical variates. The eigenvector matri- 
ces, A and B, contain the standardized weights 
for the predictor and criterion variables, re- 
spectively, and are used to form the canonical 
variates. If eigenanalysis is performed using 
variance -covariance matrices in place of corre- 
lation matrices the eigenvalue matrix must be 
postmultiplied by the diagonal matrix of standard 
deviations of the appropriate set of variables, 
predictor or criterion, to obtain the standard- 
ized weights. 

As with any statistical technique, researchers 
must have a mechanism to judge the statistical 
and practical significance of the results of ca- 
nonical correlation analysis. The standardized 
weights, A and B. and the factor structure cor- 
relations between each canonical variate and the 
original variables, and may be exam- 

ined to interpret the relationship between canon- 
ical variates and the original measures. The 
squared correlation, a2, between each pair of 
canonical variates may be interpreted as the 
amount of variance shared by the two linear com- 
binations of the predictor and criterion vari- 
ables. However, these statistics fail to pro- 
vide information regarding the amount of shared 
variation between the variables in the two bat- 
teries. Stewart and Love (1968) and Miller 
(1969), with the consultation of Paul Lohnes, 
developed a measure to permit this type of inter- 
pretation. Their statistic, denoted the bimulti- 
variate redundancy index, or the canonical redun- 

dancy index in the special case of canonical cor- 
relation, has intuitive appeal. The canonical 
redundancy statistic is defined as the sum of 
successive products between the proportion of 
variance that the canonical variates of either 
battery explain in the canonical variates of the 
other (accounted for by the squared canonical 
correlations), and the proportion of variance ab- 
sorbed by the canonical variates from their re- 

spective batteries (accounted for by the squared 
correlations between the variates and original 
variables). Using the above notation, the total 
canonical redundancy statistic for the predictor 
variables, given the criterion variables, is 

Rdx 

Cie total canonical redundancy statistic for the 

criterion variables, given the predictor vari- 
ables, is similarly 



Rd = 1-E 
( A 

where s = min(p,q). 

This sum determines the amount of redundancy in 

one battery of variables given the other. As 
such, it is directional and nonsymmetric and has 
a desirable range of zero to one. 

Miller (1969) and Miller and Farr (1971) demon- 
strated the equivalence of the total redundancy 
measures based upon multiple regression of inde- 
pendently orthogonalized batteries, such as in 

principle component analysis, and the total re- 
dundancy measures based upon canonical correla- 
tion analysis, a simultaneous orthogonalization 
procedure. The two solutions differ, however, 
in the structural components of the batteries 
and, therefore, the redundancy measures for indi- 
vidual components or variates are not identical. 

Gleason (1976) established the mathematical basis 
for a generalized version of the canonical redun- 
dancy statistic. One way of interpreting redun- 
dancy of one set of variables, given another set, 

is to reconstruct one set using only the informa- 
tion in the second set that is relevant to that 
in the first set. Gleason demonstrated that this 
approach leads to a mathematical expression that 
is equivalent to the canonical redundancy index 
as defined by Stewart and Love (1968), and thus 
provides the mathematical rigor for the defini- 
tion of this measure. 

The recent development of an index that describes 
the overlap or amount of redundancy between two 
batteries in canonical correlation analysis is 

extremely welcome. The need for such a measure 
is apparent, and researchers in education and 
psychology are generally eager to utilize mea- 
sures that assist them in their studies. In the 
short period of time since the papers by Stewart 
and Love (1968) and Miller (1969) were published, 
the canonical redundancy statistic has been de- 
scribed and recommended in texts and articles by 
some of social sciences' leading authors. For 
examples, see Cooley and Lohnes (1971, p. 170- 
172; Tatsuoka (1973, p. 280 -282); Cohen and Cohen 
(1975, p. 429 -432); Timm (1975, p. 355 -358) and 
Cooley and Lohnes (1976, p. 211 -212). In addi- 
tion, an entire session at the 1976 Annual Meet- 
ing of the American Education Research Associa- 
tion was devoted to applied research on the 
redundancy statistic. 

It is almost a certainty that the redundancy sta- 
tistic is positively biased. First, consider 
the dependence of this statistic on the squared 
canonical correlation coefficient. Second, the 
results by Miller (reported in Cooley and Lohnes, 
1976) of a Monte Carlo analysis investigating 
the sampling distribution in the null case indi- 
cate bias of the median total redundancy statis- 
tic ranging from .06 to .09 for various combina- 
tions of numbers of predictor and criterion vari- 
ables and sample sizes. No other data are avail- 
able on the bias of this statistic. Thus the 
purpose of the present study was to investigate 
the empirical sampling distribution of the first 
squared canonical correlation coefficient and of 
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the redundancy statistic using Monte Carlo meth- 
ods; subsequently, an attempt was made to derive 
a formula to correct for bias in the total redun- 
dancy statistic. 

The investigation entailed the systematic varia- 
tion of the number of predictor and criterion 
variables, the sample size, the size of the 
intrabattery correlations and the size of the 
interbattery correlations since these are the 
six parameters that affect the magnitude of the 
canonical redundancy statistic. 

Two levels of the number of variables were desig- 
nated for each of the left and right sets: cases 
with five and nine variables for each set. Due 

to the symmetry of canonical correlation anal- 
ysis, it was necessary to consider only the fol- 
lowing three combinations: 

{(p,q)} {(5,5), (9,5), (9,9)1 

Two sample sizes were selected for study, the 
case of a small sample and the case of a large 
sample. For small n, the value used was 5(p +q), 

a sample size frequently encountered in applied 
research. For the large sample, n equal to 
20(p +q) was used to examine effects of a sample 
size frequently recommended. Thus the sample 
sizes were as follow: 

(p,q) = (5,5); ns = 50, = 200 

(PA) = (9,5); = 70, = 280 
(p,q) = (9,9); ns 90, = 360 

Two conditions were chosen for the average inter - 
correlations of each of the matrices and 

and three conditions were selected for In 

applied research, variables in the predictor set 
often have medium to high correlations. Similar- 

ly for the intercorrelations between criterion 
variables. However, the correlations between 
predictor and criterion variables are quite often 
lower. In an attempt to reflect conditions often 
encountered in actual research, the off -diagonal 

elements of and Pyy were set to .30 and .60 

to reflect medium and high correlations respec- 
tively. All of the elements of were set to 

.00, .20 and .40 to reflect the null case, low 
correlations and medium correlations, respec- 
tively. The inclusion of the null case for no 
relationship between the two sets of variables 
was important in this study to provide baseline 
information against which to compare bias in the 
non -null cases. The fact that = was 

utilized to form the ((p +q)x(p +q)) supermatrix 

P= 

The above conditions lead to the definition of 
36 population matrices. (Three combinations of 
numbers of predictor and criterion variables, 2 
levels of 2 levels of and 3 levels of 

Calculation of parameters and statistics 

based upon 2 sample sizes increases the number of 

specific situations under investigation to 72. 
The process used to define population conditions 
and generate sample matrices for the Monte Carlo 



analysis is presented in schematic form in 
Figure 1. 

The results of the Monte Carlo study show that 
considerable positive bias is obtained when a 

sample redundancy statistic is used to estimate 
the population value. In general, the amount of 
bias for the redundancy statistic defined on one 
battery tends to decrease as the number of vari- 
ables increase in the second battery. Bias 
appears to be unaffected by the number of vari- 
ables when this number is equal for both batter- 
ies. Bias of both the redundancy statistic and 
the largest squared canonical correlation coef- 
ficient is consistent for all levels of intra- 
battery correlation but decreases as interbattery 
correlations increase, indicating less bias in 
the non -null cases. The most dramatic parameter 
affective bias is, as might be expected, sample 
size. Bias increases approximately fourfold as 
the sample size increases by the same amount. It 

is not known whether this relationship is linear 
since a sufficient number of sample sizes were 
not considered in the present study. 

It is useful in the case of a biased estimate to 
employ a formula that "corrects" the estimate and 
provides a value that is closer to the population 
parameter. The present study utilized two ap- 
proaches to attempt to estimate the population 
value of the total redundancy statistic, given 
information about the sample. One approach 
applied two standard shrinkage formulae to the 
sample value; the other regressed the population 
value on sample information. The results of the 
regression analysis are presented first. 

The intrabattery and interbattery correlations 
were recoded for purpose of the regression anal- 
ysis. Two regression equations were calculated, 
the first using the following variables and 
values: 

p: 5or9 
q: 5 or 9 

Rxx: if Rxx .30, 2 if Rxx = .60 

1 if = .30, 2 if Ryy .60 

Rxy: 0 if Rxy .00, 1 if Rxy .20, 2 if 

= .40 

n: 5(p +q) or 20(p+q). 

The values for intrabattery and interbattery cor- 
relations were recoded as above to attempt de- 
velopment of a regression equation that would be 
more generalizable. Indeed, the matrix randomly 
generated from the population conditions did not 
have antra- and interbattery correlations pre- 
cisely equal to the population values. The com- 
puter algorithm routine used (Montanelli, 1971) 
generates sample correlation matrices that would 
result from sampling random normal variables 
having the required population correlation struc- 
ture. Thus the actual matrices used as the popu- 
lation had correlations that, upon repeated sam- 
pling, have expected values equal to the popula- 
tion values of .30, .60 for intrabattery corre- 
lations and .00, .20 and .40 for interbattery 

correlations, respectively. 

The second regression analysis included the mean 
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sample value of the redundancy statistic in addi- 
tion to the predictor variables listed above. 
The 72 values of Rdx and Rdy were combined to 
give a sample of N =144 for the analysis. The 
regression analysis resulted in multiple corre- 
lation coefficients of R =.9925 and R =.7904 for 
the regression equations computed with and with- 
out the mean sample value, respectively. Beta 
weights were tested for significant contribution 
to the regression equation, and only those vari- 
ables with corresponding beta weights significant 
at a <.01 were retained. The significant beta 
weights were then rounded to three decimal places 
for all but one variable and a predicted value 
for each of the 144 sets of observations was com- 
puted. This value was then correlated with the 
population value to obtain an adjusted Multi- 
ple R. 

The results of the regression analysis are con- 
tained in Table 1. The use of the reduced set 
of weights does not affect the Multiple R sig- 
nificantly. It is perhaps unfortunate that the 
population value is not better predicted without 
the sample mean. This may be an artifact of the 
restricted upper range of these statistics, al- 
though population values were not that large in 
the present study, the largest being 0.502. 
Another reason for the poor prediction without 
the sample mean is that the population value 
does not vary with the sample size while it is 

apparent from detailed Monte Carlo results that 
the degree of bias is greatly affected by this 
variable. Consequently, it is not surprising 
that sample size was not significant in the re- 
gression analysis omitting the sample mean. How- 
ever, with the sample mean included in the set of 
predictors, the sample size is a significant pre- 
dictor, as might be expected. 

The results of ttìe Monte Carlo Analyses indicate 
that the behavior of the bias of total redundancy 
statistic is quite similar to that of the squared 
canonical correlation coefficient. In addition, 
Miller (1975b, 1976) demonstrated that the redun- 
dancy statistics are approximated by an F distri- 
bution with modified degrees of freedom in the 
null case. It was therefore decided to apply the 
Wherry and the 01kin -Pratt (Kendall and Stuart, 
1967) shrinkage formulae for the squared multiple 
correlation coefficient in the hopes that the 
population values of the redundancy statistics 
may be similarly estimated *. The significant in- 
crease in the Multiple R achieved when the sample 
mean value of the canonical redundancy statistic 
was included in the regression analysis was a 
further indication that investigation of these 
formulae, which utilize the sample value, might 
be worthwhile. 

The formulae used were the following: 
Let N be the sample size, 

q be the number of variables in the cri- 
terion set, 

Rd be the total redundancy statistic for the 
predictor set given the criterion set, 

* The author would like to express her apprecia- 
tion to John Pohlmann, Southern Illinois Uni- 
versity, for his suggestion to examine the 
efficacy of these formulae. 



Then 
Wherry correction = 1- NN-1 (1 -Rd); 

01kin -Pratt correction 1 - NN-31 (1 -Rd) - 

(N -q-1) (N -q (1 

In the case of the total redundancy for the cri- 
terion set given the predictor set, the roles of 
p and q were exchanged to be consistent with the 
above. 

Each formula was applied to the mean sample val- 

ues of the total redundancy statistic and the 
difference between the population value and the 
shrunken estimate was calculated. In addition 
the mean absolute value of the difference was 
computed over all 144 values of Rd. Table 2 con- 
tains the results of this analysis. 

Both formulae provide excellent approximations to 
the population value. The average absolute val- 
ues of the difference between the population and 
the corrected value were 0.003347 for the Wherry 
formula and 0.001955 for the 01kin -Pratt formula. 
Although the 01kin -Pratt formula is better when 
considering only the residuals, Table 2 illus- 
trates that this formula results in more overes- 
timates of the population values. This is evi- 
denced by the larger number (82) of negative dif- 
ferences as compared to only 12 overestimates 
using the Wherry formula. With the Wherry for- 
mula, only 3 of the 144 estimates vary from the 
population parameter by a value greater than 
0.01, and these are all underestimating the para- 
meter. Thus, while both formulae provide excel- 
lent corrections for the total redundancy statis- 
tic, the Wherry is recommended due to its ten- 
dency to provide a conservative estimate. 

It would seem that the results of the Monte Carlo 
analysis do not justify the recommendation of the 
canonical redundancy statistic as an alternative 
to the squared canonical correlations on the 
basis of less bias. The redundancy statistic, in 

general, appears to exhibit a degree of bias 
quite similar to that of the squared canonical 
correlation. However, the bias is easily correc- 
ted by the Wherry or Olkin -Pratt formulae to es- 
timate the true population value. What is per- 
haps more important are the interpretive charac- 
teristics of the canonical redundancy statistic 
as compared to those of the canonical correlation 
coefficient. If interest truly lies in the re- 
lationship between groups of variables as opposed 
to the relationship between linear combinations 
of variables, then the redundancy statistic pro- 
vides a more realistic and meaningful measure 
for the conscientious education researcher. 
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FIGURE 1: SCHEMATIC REPRESENTATION OF DESIGN TABLE 1: REGRESSION OF TOTAL REDUNDANCY POPULATION 
OF MONTE CARLO ANALYSIS VALUE ON SAMPLE INFORMATION 

Define 
Population 

Conditions 

Repeat 72 

Form 
Specified 

Supermatrix 

Generate 
Population 
Supermatrix 

Repeat 600 

NOT INCLUDING THE SAMPLE MEAN AS A PREDICTOR: 

VARIABLE 

q 

Rxx 

Ryy 

Rxy 

n 

Constant 

Multiple R = .7904 

ORIGINAL WEIGHT 

0.0102 

-0.0007 

-0.0496 

-0.0372 

0.0897 

-0.0000 

0.1775 

F 

9.15 

0.04 

21.01 

11.80 

183.36 

0.00 

Calculate 
Population 
Parameters 

times 

Generate 

Sample 
Supermatrix 

Calculate 
Sample 
Estimates 

Aggregate 
Sample 

Estimates 

Compare 
Estimates 
with 

Parameters 

Adjusted Multiple R = .7903 

INCLUDING THE MEAN SAMPLE VALUE AS A PREDICTOR: 

VARIABLE ORIGINAL WEIGHT F 

-0.0025 12.18 

q -0.0033 23.86 

-0.0032 1.95 

-0.0024 1.11 

Rxy 
0.0056 7.84 

n 0.0003 541.45 

X 0.9984 3261.739 

Constant -0.0484 

Multiple R .9925 

Adjusted Multiple R = .9911 

TABLE 2 

WHERRY AND OLKIN /PRATT CORRECTION FORMULAE APPLIED TO THE TOTAL REDUNDANCY STATISTIC 

p q n 

POPULATION 
VALUE 

POPULATION- 
WHERRY 

5 5 50 0.143963 0.003304 
5 5 50 0.140473 -0.000261 
5 5 50 0.409582 0.008356 
5 5 50 0.143963 0.007461 
5 5 50 0.119790 0.004827 
5 5 50 0.251462 0.006330 
5 5 50 0.148249 0.005880 
5 5 50 0.097611 0.007781 
5 5 50 0.257855 0.004125 
5 5 50 0.148248 0.000872 
5 5 50 0.088609 0.003768 
5 5 50 0.140648 0.007815 

POPULATION- 

OLKIN /PRATT p q n 

POPULATION 
VALUE 

POPULATION- 
WHERRY 

POPULATION - 
OLKIN /PRATT 

-0.004118 5 5 50 0.158364 0.003330 -0.004422 
-0.007684 5 5 50 0.159670 0.000585 -0.007257 
-0.002657 5 5 50 0.368618 0.008368 -0.002417 

0.000138 5 5 50 0.169623 0.005078 -0.002884 
-0.001965 5 5 50 0.153155 0.010905 0.003447 
-0.003142 5 5 50 0.339137 0.006596 -0.003964 
-0.001581 5 5 50 0.158365 0.005209 -0.002500 
0.001653 5 5 50 0.131802 0.007002 -0.000037 

-0.005480 5 5 50 0.217230 0.004450 -0.004474 
-0.006706 5 5 50 0.169623 0.005690 -0.002259 
-0.002222 5 5 50 0.125883 0.006079 -0.000835 
0.000580 5 5 50 0.188901 0.006999 -0.001329 
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TABLE 2 (continued) 

WHERRY AND OLKIN /PRATT CORRECTION FORMULAE APPLIED TO THE TOTAL REDUNDANCY STATISTIC 

p q n 

POPULATION 
VALUE 

POPULATION- 
WHERRY 

POPULATION- 
OLKIN /PRATT p q n 

POPULATION 

VALUE 
POPULATION- 
WHERRY 

POPULATION - 
OLKIN /PRATT 

5 5 200 0.143963 0.001337 -0.000041 9 5 280 0.185906 0.001482 0.000335 
5 5 200 0.140473 0.001132 -0.000223 9 5 280 0.235254 0.001258 -0.000087 
5 5 200 0.409582 0.002325 -0.000172 9 5 280 0.502448 0.001689 -0.000129 
5 5 200 0.143963 0.002531 0.001161 9 5 280 0.178609 0.000362 -0.000758 
5 5 200 0.119790 0.001502 0.000297 9 5 280 0.195848 0.002733 0.001549 
5 5 200 0.251462 0.001453 -0.000545 9 5 280 0.468800 0.000971 -0.000843 
5 5 200 0.148249 0.002995 0.001599 9 5 280 0.185910 0.000338 -0.000814 
5 5 200 0.097611 0.001712 0.000675 9 5 280 0.185180 0.002177 0.001037 
5 5 200 0.257855 0.001999 -0.000027 9 5 280 0.311414 0.000169 -0.001417 
5 5 200 0.148248 0.001202 -0.000206 9 5 280 0.178601 0.002573 0.001463 
5 5 200 0.088609 0.002333 0.001371 9 5 280 0.155714 0.000544 -0.000469 
5 5 200 0.140648 0.001889 0.000538 9 5 280 0.255294 0.000875 -0.000543 
5 5 200 0.158364 0.000991 -0.000485 9 9 90 0.146454 0.009138 0.005702 
5 5 200 0.159670 0.001988 0.000509 9 9 90 0.211141 0.004578 0.000240 
5 5 200 0.368618 0.003466 0.001054 9 9 90 0.464035 0.007861 0.001979 
5 5 200 0.169623 0.001568 0.000023 9 9 90 0.146455 0.007755 0.004299 
5 5 200 0.153155 0.001228 -0.000212 9 9 90 0.160521 0.002294 -0.001437 
5 5 200 0.339137 0.001201 -0.001137 9 9 90 0.337630 0.003364 -0.002098 
5 5 200 0.158365 0.000399 -0.001082 9 9 90 0.157883 0.013028 0.009483 
5 5 200 0.131802 0.001810 0.000521 9 9 90 0.181501 0.000256 -0.003776 
5 5 200 0.217230 0.003660 0.001847 9 9 90 0.452014 0.004943 -0.000930 
5 5 200 0.169623 0.000722 -0.000829 9 9 90 0.157884 0.009940 0.006352 
5 5 200 0.125883 0.000900 -0.000354 9 9 90 0.142738 0.002298 -0.001183 
5 5 200 0.188901 0.001900 0.000238 9 9 90 0.262638 0.000827 -0.004083 
9 5 70 0.126378 0.005372 0.000981 9 9 90 0.125934 0.007711 0.004559 
9 5 70 0.177453 0.006378 0.001104 9 9 90 0.196522 -0.000012 -0.004232 
9 5 70 0.404501 0.004114 -0.003453 9 9 90 0.379337 0.006317 0.000653 
9 5 70 0.126366 0.006023 0.001645 9 9 90 0.118614 0.004445 0.001356 
9 5 70 0.140718 -0.000907 -0.005678 9 9 90 0.153542 0.002280 -0.001355 
9 5 70 0.291738 0.005802 -0.000980 9 9 90 0.453077 0.001585 -0.004293 
9 5 70 0.135215 0.003134 -0.001464 9 9 90 0.130175 0.008485 0.005281 
9 5 70 0.140720 -0.000963 -0.005735 9 9 90 0.150499 -0.000666 -0.004299 
9 5 70 0.358482 0.011438 0.004148 9 9 90 0.325202 0.000843 -0.004557 
9 5 70 0.135185 0.006471 0.001935 9 9 90 0.122898 0.006177 0.003048 
9 5 70 0.117356 0.004498 0.000263 9 9 90 0.119296 0.001248 -0.001901 
9 5 70 0.216770 0.007672 0.001819 9 9 90 0.248147 0.002326 -0.002432 
9 5 70 0.185906 0.005070 -0.000397 9 9 360 0.146454 0.003555 0.002827 
9 5 70 0.235254 0.006339 0.000183 9 9 360 0.211141 0.002434 0.001475 
9 5 70 0.502448 0.004181 -0.003505 9 9 360 0.464035 -0.000382 -0.001786 
9 5 70 0.178609 0.002624 -0.002767 9 9 360 0.146455 0.003094 0.002364 
9 5 70 0.195848 0.001877 -0.003791 9 9 360 0.160521 0.000214 -0.000581 
9 5 70 0.468800 0.007413 -0.000298 9 9 360 0.337630 0.001363 0.000092 
9 5 70 0.185910 0.006682 0.001240 9 9 360 0.157883 0.005156 0.004390 
9 5 70 0.185180 0.002131 -0.003371 9 9 360 0.181501 -0.000246 -0.001116 
9 5 70 0.311414 0.009326 0.002363 9 9 360 0.452014 0.000755 -0.000644 
9 5 70 0.178601 0.006940 0.001619 9 9 360 0.157884 0.005443 0.004678 
9 5 70 0.155714 0.001594 -0.003436 9 9 360 0.142738 0.002636 0.001919 
9 5 70 0.255294 0.007934 0.001547 9 9 360 0.262638 -0.000884 -0.001999 
9 5 280 0.126378 0.000311 -0.000557 9 9 360 0.125934 0.002309 0.001657 
9 5 280 0.177453 0.001906 0.000798 9 9 360 0.196522 0.000495 -0.000423 
9 5 280 0.404501 0.001089 -0.000673 9 9 360 0.379337 0.001064 -0.000270 
9 5 280 0.126366 0.001165 0.000301 9 9 360 0.118614 0.001321 0.000695 
9 5 280 0.140718 0.001171 0.000234 9 9 360 0.153542 0.001024 0.000259 
9 5 280 0.291738 0.001049 -0.000481 9 9 360 0.453077 0.001321 -0.000078 
9 5 280 0.135215 0.000048 -0.000867 9 9 360 0.130175 0.003793 0.003130 
9 5 280 0.140720 0.001432 0.000497 9 9 360 0.150499 -0.000119 -0.000876 
9 5 280 0.358482 -0.000552 -0.002245 9 9 360 0.325202 -0.000193 -0.001445 
9 280 0.135185 0.002048 0.001143 9 9 360 0.122898 0.004237 0.003605 
9 5 280 0.117356 -0.000014 -0.000837 9 9 360 0.119296 0.005171 0.004559 
9 5 280 0.216770 0.001037 -0.000240 9 9 360 0.248147 0.001237 0.000166 

902 


